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Abstract—In radiotherapy, structure delineation is crucial to
ensure accurate irradiation of the target sparing the adjacent
organs. Recently, deep learning-based segmentations achieved
encouraging results possibly speeding up the process contrary to
manual contouring. Nonetheless, such methods can be overconfi-
dent even though their predictions may be incorrect. In this study,
we explored four ways to estimate segmentation uncertainty
for prostate cancer patients, investigating whether uncertainty
can serve as surrogate for the performance of the network.
Finally, we inspected the robustness of our approach for out-of-
distribution data. A relation between accuracy and uncertainty
was observed, suggesting that uncertainty quantification can
provide valuable information in clinical settings. However, a
discrimination between in- and out-of-distribution data was
noticed, implying that a model tested on inputs distant from
the training distribution, did not necessarily produce increased
uncertainty.

Index Terms—uncertainty estimation, deep learning, radiother-
apy, prostate delineation

I. INTRODUCTION

In light of the critical role of medical diagnosis and
treatment therapy, structure localization and organ delineation
have attracted widespread attention during the past decades
[1, 2]. Traditionally, segmentation of the different regions of
interest (ROIs) is performed manually [2]. However, this is
time-consuming, possibly introducing treatment delays, and
presumably comprising large inter-observer variabilities [2, 3].
In an attempt to alleviate the delays caused by manual de-
lineations, make the procedure less error-prone and decrease
human intervention, automatic segmentation algorithms are
introduced [1, 4, 5, 6]. Akin to manual contouring, deep
learning (DL) methods provide precise and robust structure
delineations while at the same time they might accelerate the
process [2, 5, 7, 8]. As a result, DL has become a broadly
recognized and used approach for automatic segmentation over
the past years [9, 10, 11, 12, 13].

In radiotherapy (RT), patients undergo a personalized irra-
diation treatment according to their anatomical and structural
composition [2]. During the workflow, magnetic resonance
imaging (MRI) assists structure delineations, owing to its great
soft-tissue contrast, whereas the dose calculation is performed
on computed tomography (CT) scans [1, 5, 14]. Therefore,
providing properly delineated contours for both the target and
the normal structures, is rather critical for the patients [12, 15].
Automatic segmentation with DL could reduce inter-observer
variability and speed up the procedure, with respect to man-
ual contouring [2, 8]. However, the predicted segmentations

are revised by experts to ensure their accuracy, since poor
predictions may influence the treatment planning and therapy
response. Specifically for prostate cancer RT, various methods
for automatic segmentation of the target and the surrounding
organs-at-risk (OARs) have been published to this day [5, 16].

Generaly, DL-based models are prone to overconfident pre-
dictions although their results might be incorrect [11, 12, 15].
Faulty predictions introduce problems and possibly fatal errors
in applications for which accuracy is essential, like medical
diagnosis and treatment therapy [12, 15, 17, 18]. On that
account, quantifying uncertainty of a DL architecture may
provide an approach for improving the procedure by allevi-
ating the manual revision and correction [8, 11]. In addition,
uncertainty might be used to facilitate quality assurance of
the segmentation in clinical settings, if a relation is found
with the network’s accuracy. In clinic, no information about
the performance of the automatic pipeline is available thus,
having a surrogate for it is convenient for researchers. Since
DL models accomplish good performance on datasets similar
to those used during training, their ability to generalize well
on discrepant data is another point of interest. Thus, analysis
of the ambiguity generated by out-of-distribution data in DL
methods might provide additional insights on the network
itself. Although pivotal, uncertainty estimation of DL seg-
mentation models and their applications in RT has not been
examined to a large extent yet.

In this work, we consider the task of prostate gland seg-
mentation. We adopt a V-net architecture [13] for structure
delineation including a pipeline for uncertainty estimation on
the predictions. We also investigate the correlation between
uncertainty and various performance metrics in order to assess
whether uncertainty can be used as a quality measure of the
segmentation. Lastly, an exploration of our model’s robustness
along with the robustness of using uncertainty to signal the
quality of the segmentation is investigated by introducing out-
of-distribution input data.

II. PRELIMINARIES AND RELATED WORK

Uncertainty quantification of DL methods was studied ex-
tensively by Kendal and Gal [20] in 2017. According to the au-
thors, uncertainty can be divided into two main types, pursuant
to their source of origin: the aleatoric (or data uncertainty) and
the epistemic (or model uncertainty) components. Aleatoric
uncertainty reflects the intrinsic noise in the dataset, while
the epistemic component represents the uncertainty of the
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Fig. 1. Schematic representation of the differences between aleatoric and
epistemic uncertainty components. Aleatoric uncertainty is an inherent char-
acteristic of the data so it’s irreducible even if more data is provided to the
network. Epistemic uncertainty is reducible and decreases with an increasing
amount of data. Figure encountered in the work of Adbar et al. [19].

model’s parameters. The epistemic component can be elim-
inated when giving enough data to the model. Additionally,
aleatoric uncertainty can be discriminated even further into
homoscedastic and heteroscedastic. Heteroscedastic aleatoric
uncertainty considers input-dependent noise for the entire
dataset, whereas homoscedastic implies uniform noise across
the data. This decomposition on the concept of uncertainty
can be very convenient for researches and developers who
wish to analyze their results or design their model focusing
on the influence of a specific uncertainty type. Nevertheless,
it should be noted that this discrimination between aleatoric
and epistemic uncertainty is not always clear and becomes
strongly dependent on the task and the settings employed [21].
This means that epistemic may transform to aleatoric and vice-
versa, and thus, they should not be considered as absolute con-
cepts [21]. A visual representation of the differences between
the two uncertainty factors can be seen in Fig. 1.

According to the review of Adbar et al. [19], more than
2500 papers have been published on uncertainty quantification
in the last decade, irrespective of the field of interest. The
main idea behind the implementation of a model that captures
uncertainty, leans on the Bayesian theorem, according to
which posterior beliefs are affected by prior beliefs. The
neural network models (NNs) that are trained with a Bayesian
approach are referred to as Bayesian Neural Networks (BNNs)
[19, 21, 22]. Such networks place a prior distribution p over
their parameters ω (from now on referred to as p(ω)) and
encode the training data D = {x, y} via a likelihood function
p(Dy|Dx, ω), where Dx and Dy correspond to the training
data and labels, respectively. Softmax can be used as the
likelihood function for classification tasks, p(Dy|Dx, ω) =
Softmax(output), while the Bayesian posterior distribution
p(ω|D) is captured using the Bayes’ theorem, once implying
that the parameters and the inputs are independent [22]:

p(ω|D) =
p(Dy|Dx, ω)p(ω)∫

ω
p(Dy|Dx, ω′)p(ω′)dω′

∝ p(Dy|Dx, ω)p(ω)

(1)
Inference or marginalisation is the process of calculating the
marginal probability distribution of the output y∗, concerning
the posterior distribution p(ω|D) and given a test input x∗

[19, 22]:

p(y∗|x∗, D) =

∫
ω

p(y∗|x∗, ω′)p(ω′|D)dω′ (2)

A. Variational Inference

The computation of the true posterior in an analytical way
is infeasible [22], however, a numerical solution has been
suggested to solve this problem. This is achieved through the
variational inference (VI) approach, which finds a distribution
qθ(ω) that approximates the true posterior distribution p(ω|D),
by being as close as possible to it [17, 19, 20, 21, 22]. This is
ensured by measuring the Kullback-Leibler (KL) divergence,
a measure of similarity between two distributions, defined as:

KL(qθ(ω)|p(ω|D)) =

∫
ω

qθ(ω
′) log

qθ(ω
′)

p(ω′|D)
dω′ (3)

Since the aim is to decrease this similarity, the overall goal is
the minimization the above-mentioned equation, with respect
to θ. Alternatively, the KL divergence minimization can be
rearranged into the evidence lower bound (ELBO) score
maximization, as referred in [22]:

LV I :=

∫
ω

qθ(ω
′) log(p(Dy|Dx, ω

′)) dω′ −KL(qθ(ω)|p(ω))
(4)

The solution derived by this process is a distribution qθ(ω)
that describes the data well, while also being near the prior
distribution [17, 19].

Monte Carlo Dropout

Dropout VI constitutes one of the most widely used
techniques to approximate the posterior and estimate model
uncertainty [19]. When used during training, dropout is a
regularization technique that randomly ignores nodes of the
network. Gal and Ghahramani [17] suggested that dropout can
also be used to approximate Bayesian inference. In practice,
dropout is applied during test time and a finite number of
predictions is sampled and averaged. Such an approach is
known as Monte Carlo (MC) dropout, due to the stochasticity
of the forward passes. In semantic segmentation, where the
probabilities of the background and the foreground can be
generated, epistemic uncertainty is measured by computing
the Shannon’s entropy on the probabilities of the latter [20].
Please refer to Supplementary V for more details about the
mathematical implementation of the MC dropout technique.

A variety of papers available in literature have used dropout
to estimate epistemic uncertainty for segmentation, as summa-
rized in Table I. U-net-like architectures are very popular for
this purpose and are mainly employed by studies that tackle
medical imaging problems, such as [11], [25], [26] and [28].
DenseNet is encountered in [24], while a fully convolutional
version of it is implemented in [20]. Finally, a HighResNet
architecture is exploited in [23]. The majority of studies (6 out
of 9) incorporate 50% dropout during test time except for [20]
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TABLE I
SUMMARY OF THE PAPERS DISCUSSED THAT USED MC DROPOUT, IN CHRONOLOGICAL ORDER. THE ARCHITECTURE, THE DROPOUT PROBABILITY AND

THE NUMBER OF MC SAMPLES INVOLVED ARE REPORTED. THE DROPOUT RATE USED DURING TRAINING AGREES WITH THE ONE USED IN TEST TIME
FOR EACH STUDY.

Study Model
Dropout

Probability (%) MC samples
Kendal,2017 [20] Fully conv. DenseNet 20 50

Bragman,2018 [23] HighResNet 50 20
DeVries,2018 [11] U-net 50 20
Jungo,2018 [24] DenseNet 20 20

Hu,2019 [25] probabilistic U-net 50 n.a.
Do,2020 [26] probabilistic U-net 50 1115

Meijenik,2020 [27] NN: 2 layers/100 nodes 50 100
Jungo,2020 [28] U-net 5/50 n.a.
Ståhl,2020 [29] NN: 2 layers/800 nodes 60 n.a.

and [24] where 20% is applied and [29] where 60% was used.
In [28] experiments with 5% dropout are included in parallel
with the ones of 50%. At the same time, one-third of the
papers include 20 MC samples, while this quantity experiences
a considerable rise in [27] and [26], where 100 and 1115 MC
samples are used respectively. Finally, three papers ([25], [28]
and [29]) do not mention this information.

B. Model ensembling

Lakshminarayanan et al. [30] suggested that model ensem-
bling could serve as an alterantive approach to BNNs. This
pathway introduces the idea that a collection of models would
produce more robust predictions contrary to those acquired
by a single method [12, 19, 30], while providing proper
model uncertainty estimates. The average of the predictions
acquired by each model in the ensemble serves as the final
predicted segmentation of the network, whereas their variance
highlights the epistemic uncertainty [30]. The similarity with
the Bayesian approach presented in the previous subsection,
is worthy of note [29].

In literature, various combinations of NN architecture types
with numerous models combined together have been tested
when using the ensemble technique for uncertainty estimation,
as showed in Table II. When dealing with medical imaging
data, a very common approach is to employ together multiple
U-net architectures, as presented in [12] and [28] where 2
and 10 models were applied. In case of computer vision
application, however, simple NN architectures with a number
of models ranging from 1 to 15 ([30] and [27]) and even
50 ([29]) seem to serve the purpose of capturing epistemic
uncertainty. Nevertheless, apart from NNs a combination of 2
DenseNets is also considered effective, as investigated in [12].

C. Heteroscedastic aleatoric uncertainty

Epistemic component is considered the most interesting type
because it reflects the confidence of the model itself [20].
Nevertheless, quantifying the intrinsic uncertainty of the data
is extremely important as well, since it could give a hint
about the ambiguity of the input. More specifically, uncertain
results would be produced if poor image quality is fed into
the network or if noisy inputs are present [7, 8]. This is why

TABLE II
SUMMARY OF THE PAPERS DISCUSSED THAT USED MODEL ENSEMBLING,

IN CHRONOLOGICAL ORDER. THE NUMBER OF NETWORKS AND THE
ARCHITECTURES INVOLVED ARE MENTIONED.

Study Number of networks Architectures
Lakshminarayanan,2016 [30] 1-15 NN: 3 layers/200 nodes

Meijerink,2020 [27] 5 NN: 2 layers/100 nodes
Jungo,2020 [28] 10 U-net
JooLee,2020 [12] 2/2 DenseNet/U-net
Ståhl,2020 [29] 50 NN: 2 layers/320 nodes

is meaningful to assess the aleatoric component along with its
epistemic counterpart.

According to Kendal and Gal [20], homoscedastic aleatoric
uncertainty is computed by tuning the constant noise σ, which
is present in the dataset. Heteroscedastic uncertainty accounts
for variations in the value of σ amongst the inputs. There-
fore, it requires more adaptations on the original architecture.
These adaptations consist of learning the variance throughout
training rather than computing it at the end of the inference,
like what MC dropout or model averaging approaches do.
In practice, information about the variance of the input is
lacking, thus the goal is reached in an unsupervised way
through the computation of the loss. The model is modified to
produce a two-fold result for every input: the logits ŷ and the
variance σ2, which corresponds to the aleatoric uncertainty
[20]. In classification settings, the variance is corrupted by
Gaussian noise N(0, σ2I) and then added to the logits. The
result is processed through a softmax function and the final
class probabilities are acquired by integration using multiple
stochastic forward passes [20]. The objective function finally
used can vary. For instance, negative log-likelihood with a
softmax likelihood function scaled by the uncertainty term σ2

is included in [23], while the cross-entropy loss is referred in
[28], [25] and [11]. In [29] the categorical cross-entropy loss
is accommodated. A summary of the different studies reported
in Sections II-A to II-C, is presented in Table III.
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TABLE III
SUMMARY OF THE LITERATURE DISCUSSED ABOUT UNCERTAINTY ESTIMATION, AS PRESENTED IN SECTIONS II-A TO II-C, IN CHRONOLOGICAL

ORDER. THE STUDY, ITS PRACTICAL APPLICATION AND THE METHOD FOR UNCERTAINTY DETERMINATION (MC DROPOUT, ENSEMBLE AND/OR
HETEROSCEDASTIC ALEATORIC UNCERTAINTY) ARE REPORTED.

Study Application Uncertainty approach

MC
dropout Ensembles

Heteroscedastic
aleatoric

uncertainty
Lakshminarayanan,2016 [30] computer vision X

Kendal,2017 [20] computer vision X X
Bragman,2018 [23] prostate RT X X
DeVries,2018 [11] skin lesion segmentation X X
Jungo,2018 [24] brain tumour segmentation X

Hu,2019 [25] lung & prostate segmentation X X

Do,2020 [26]
myocardial arterial spin

labeling (ASL) segmentation X
Meijenik,2020 [27] medical tabular data X X

Jungo,2020 [28] brain tumour segmentation X X X

JooLee,2020 [12]
computer vision &

endometrium segmentation X

Ståhl,2020 [29] computer vision X X X

D. Uncertainty as a quality measure

Uncertainty gives a valuable insight on the model’s con-
fidence. As presented in the previous subsections, there are
diverse ways to perceive uncertainty estimates on DL-based
architectures, however, the essential point is discovering how
to use this knowledge properly. In clinical settings and most
specifically in RT, the information on uncertainty would ide-
ally indicate faulty predictions. Such predictions should be
further inspected and corrected by the experts, as there is no
room for inaccuracies.

Notwithstanding, only few studies have focused on the
assessment of uncertainty information. In particular, most of
the papers combine the information about the segmentation
performance with the knowledge derived from the uncertainty
estimation in one single value. Dice similarity coefficient
(DSC) comprises the most prevailing performance metric that
has been analyzed, as seen in [24], [28] and [7]. It can
be compared to the doubt score (dbt) based on user-defined
threshold values, as in [24], or to the Hausdorff distance (HD),
as mentioned in [7], in terms of correlation with uncertainty.
Moreover, the area under the ROC curve (AUROC) is em-
ployed in [28] and [11] and the area under the precision-
recall curve (AUPRC) is also mentioned in the latter work.
Both these metrics, AUROC and AUPRC, interrogate whether
uncertainty can detect segmentation failure. A summary of the
aforementioned papers regarding how uncertainty is evaluated,
can be found in Table IV.

III. METHODOLOGY

In this work, we implemented a deep learning method to
segment the prostate on MRI, employing four approaches
to capture uncertainty. We explored whether uncertainty can
give profitable insights into the performance of the model.
Finally, we investigated how our approach operates when out-
of-distribution data is used.

TABLE IV
SUMMARY OF EVALUATION METRICS FOR UNCERTAINTY ENCOUNTERED

IN LITERATURE, IN CHRONOLOGICAL ORDER.

Study Uncertainty evaluation metrics
Jungo,2018 [24] dbt, DSC

DeVries,2018 [11] AUROC, AUPRC
Pan,2019 [7] DSC, HD

Jungo,2020 [28] DSC, AUROC

A. Data collection and preprocessing

The dataset used for this project was the publicly available
prostate data collection of the Medical Segmentation
Decathlon1. This collection consists of multi-parametric
MR images of 48 patients, 32 for training and 16 for testing,
with manual delineations of the prostate gland and the prostate
peripheral zone available only in the training set. In this study,
due to the lack of labeled images for test set provided, we
splitted the Decathlon training set into training (14 patients),
validation (9 patients) and test (9 patients) subsets. For each
patient, a combination of T2-weighted and apparent diffusion
coefficient (ADC) from diffusion-weighted scans was com-
pounded with resolution of 0.6×0.6×4mm and 2×2×4mm
correspondingly [31].

Image intensities from both T2-weighted scans and ADC
scans were initially normalized according to the 95/5 per-
centiles of each channel. However, this was taken into con-
sideration during the optimization of the network. Moreover,
resampling to unit voxel size (1×1×1 mm3) was employed,
using bilinear and nearest neighbor interpolation for the im-
ages and labels, respectively [32]. Cropping or padding for
both T2 and ADC scans was applied to acquire volumes of
192×192×64 voxels. For the sake of simplicity, we rejected
the label of the peripheral zone and preserved only the label for

1http://medicaldecathlon.com
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Model’s output

Variance Predicted
Segmentation

noise
N(0, 1)

x +

Probabilities

Loss = NLL (average probabilities, target values)

Log(Softmax)

Monte Carlo
integration

(x20 samples)

Fig. 2. Representation of the heteroscedastic loss function computation. NLL: the negative log-likelihood loss.

the prostate gland. Because of space constraints, an example
pair of images, labels for two different patients from the data
collection used, can be seen in Supplementary V.

B. Model architecture and training

For prostate segmentation, a V-net architecture [13] was
adopted. V-net uses an encoder-decoder architecture with
residual connections while it is composed of 4 convolutional
layers for the downsampling and of 4 for the upsampling
path. It processes data by performing volumetric convolutions
for feature extraction (using kernels of 5×5×5 voxels) and
for image resolution reduction (applying kernels of 2×2×2
voxels, with a stride of 2). At the end of the decoder, a softmax
activation function is encompassed to produce class probabili-
ties with two outputs: one channel for the foreground and one
for the background. The total number of the model’s param-
eters was 45,609,944. We trained the network with dropout
p = 50% and used the ADAM oprimizer with a learning rate
of 1e−1. In order to capture the aleatoric uncertainty, we added
another channel that computes the variance of the foreground.
This channel was learnt during training via the calculation
of the loss. Originally, the loss function used for prostate
segmentation with the V-net was the Dice loss [13]. However,
this could not apprehend the uncertainty information inherent
in the input (reflecting the aleatoric component). Therefore,
our objective function was adapted to accommodate for that.
The modified loss was inspired by Kendal and Gal [20]:
samples were drawn from a Gaussian distribution N(0, 1),
which corrupted the channel of the variance, and the result
was added to the logits. The probabilitites of the classes were
computed through the application of the log softmax on the
output of this procedure. This process was repeated for T = 20
times, finally averaging the obtained probabilities. At the end,
the loss for each epoch was calculated as the negative log-
likelihood loss (NLL) between the predicted probabilities (p)
and the target labels (y) for the C=2 classes:

Loss = −
C=2∑
c=1

yc(log
1

T

T=20∑
t=1

log pt,c) (5)

The process of the composition of the loss function is illus-
trated in Fig. 2.

Data augmentation was used during training applying affine
deformations (shift, scale and rotations). The parameters were
sampled from uniform distributions and applied to the coronal
and sagittal planes only. In particular, the shift parameter was
selected from the range [-50, 50] mm, the angle for the rotation
was chosen from [-10, 10] degrees and the scaling factor was
between [-10%, 10%] + 1. When the training was completed
the value of 0.5 was applied to the output, in order to transform
the predicted probability maps (for the background and the
foreground) into binary ones, by thresholding the voxels [13].
Moreover, small predicted structures that were not part of the
largest delineated connected component were removed. The
architecture was implemented in PyTorch (v1.6.0) using the
MONAI framework2 (v0.3.0).

C. Uncertainty estimation

In our approach, we leveraged four different ways to esti-
mate uncertainty:
• Epistemic uncertainty was approximated by the MC

dropout technique. Since most of the related studies
adopted a dropout rate of 0.5 during inference time, we
also maintained this value, and we sampled from the
network 50 times. Finally, the epistemic uncertainty map
was formulated by estimating Shannon’s entropy over the
mean probabilities of the prostate channel, derived by the
multiple MC samples.

• Aleatoric uncertainty was captured via the learnt loss
function, as described in Section III-B. This uncertainty
map was formulated as the average of the variance
channel, after the application of the multiple MC samples
during inference.

• Total uncertainty was considered as the voxel-wise sum
of the aleatoric and the epistemic components.

• 1-Max(Softmax) uncertainty was the inverse of the
maximum softmax probability. This uncertainty estimate
was calculated by merely finding the maximum of the

2https://monai.io/
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softmax output across the class dimension and reversing
the result. This measure should be the easiest way to
capture uncertainty [11, 15], as it is the opposite of the
confidence on the predictions.

For all the types mentioned, the calculations were performed
per output voxel so that for each type, we procured an
uncertainty map of the same size as the input image. We
compared all four types for the evaluation of our method.

D. Evaluation metrics

The accuracy of the segmentations were quantitative calcu-
lated against the ground truth labels through dice similarity
coefficient (DSC), accuracy, precision, 95% percentile haus-
dorff distance (HD95) and average surface distance (ASD).
All measures were calculated within a bounding box which
enclosed the structure indicated by the labeled image. This
bounding box was defined as the minimum box that includes
the information from the labeled image through all transverse
slices, increased by 5 mm for each side of the coronal and
sagittal planes. This was done to ensure that the performance
metrics were combined with the uncertainty proxies per trans-
verse slice, so that the slices that generated high uncertainty
were pointed out for manual correction. This is discussed in
more detail in Section III-E.

Uncertainty assessment constitutes a more complex task,
since there was no ground truth available. The evaluation
was accomplished by computing the average value of the
uncertainty map within the aforementioned bounding box.
In addition to that, we used the doubt score (dbt) that was
presented by Jungo et al. [24], which served as a proxy for
uncertainty. This score combines the uncertainty map (h), an
Euclidean distance map of every voxel to the outline of the
segmentation (w) and a binary mask around the segmenation
outline (k) for each voxel i ∈ [1, N ]:

dbt =

N∑
i=1

kiwihi (6)

When calculating the dbt, the information from all voxels
inside the image volume is included. Hence, contrary to the
mean value of the uncertainty map, dbt was computed over
the entire transverse slice, rather than inside the bounding
box. Under the observation that the equation 6 would generate
higher dbt for larger delineated volumes, a slightly adjusted
version of it was formulated and applied, normalizing this
score over the number of voxels present in each slice:

dbtmodified =

∑N
i=1 kiwihi
Nvoxels

(7)

In an attempt to analyze whether uncertainty or its surro-
gates and various performance metrics were correlated with
one another, Spearman’s rank correlation coefficient (rs) was
calculated. This coefficient reflects how well the relationship
of two variables, a and b, can be described by a monotonic
function, while assuming that these variables are not explicitly
normally distributed [33]. The resulted value ranges from -
1 to 1, with these two bounds indicating an exact negative

or positive correlation of the compared quantities within this
range, respectively. That is to say if rs is negative, as the
quantity a increases, b decreases, whereas if rs is positive, b
grows as a grows. No correlation is implied in case rs equals
0.

E. Experiments

Three main experiments have been conducted in this
work, namely network optimization, uncertainty assessment
and analysis of the model’s behaviour on out-of-distribution
datasets.

Network optimization

TABLE V
POINT OF REFERENCE FOR DATA NORMALIZATION AND

HYPER-PARAMETERS INITALIZATION FOR THE V-NET. THE PARAMETERS
WHOSE INFLUENCE WAS EXPLORED DURING THIS EXPERIMENT ARE

WRITTEN IN BOLD.

Data normalization 95/5 percentiles
Batch size 2
Optimizer ADAM

Learning rate 1e− 1
Learning rate scheduler no

L2 regularization no
Early stopping no
Epochs number 500

In order to maximize the segmentation accuracy of the V-
net, we investigated data normalization and hyper-parameter
optimization in terms of batch size, learning rate scheduler
and weight decay. We started by setting the parameters-to-be-
explored to their point-of-reference state, and then we modified
each of them while monitoring the produced mean DSC for
the validation set. We improved our segmentation approach by
employing in the final network the parameters which resulted
in the highest mean DSC for the above-mentioned set. The
baseline for data normalization and parameters initialization,
is reported in Table V.

A comparison between input normalization techniques was
conducted: we explored the effect of the min–max normal-
ization, applied on percentiles of the image intensities (95/5,
97.2/2.5 and 99/1), and those of the z-score normalization,
employing the mean and standard deviation of each volume.
The impact of batch size was also questioned, specifically for
batches composed of 2, 4 and 6 images. The learning rate
was initially set to 1e − 1, and we compared three different
schedulers to update it during training, namely CyclicLR,
ReduceLROnPlateau and StepLR (the names correspond
to those found in the documentation of PyTorch). CyclicLR
makes use of a cyclical learning rate between two boundaries
(from 1e− 3 to 1e− 1), where the period of the cycle was set
to 2,000 iterations. ReduceLROnPlateau reduces the initial
rate by a factor of 0.2 if the DSC obtained for the validation set
has stopped improving. StepLR decreases this rate to the half
of its previously applied value after every 50 epochs. Finally,
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L2 regularization of 1e−6 for the ADAM optimizer was also
tested. Early stopping was used to stop training in case no
improvement appeared in the last 5 epochs to the mean DSC
for the validation set. The architecture was optimized for 500
epochs for each combination of the normalization method and
hyper-parameters, reaching a number of 36 combinations.

Uncertainty as a surrogate of performance
The four uncertainty types were analyzed by taking into ac-

count the average value of the uncertainty map in the bounding
box per transverse slice, and the doubt score and the suggested
modified doubt score for the entire image, again per transverse
slice. Apart from these uncertainty assessment metrics, the
accuracy of the segmentation was computed per slice in the
bounding box in terms of accuracy, precision, DSC, HD95 and
ASD. Rs was employed to examine the relationship between
the performance metrics and the uncertainty estimates. Hence,
the general pattern of this correlation for the entire dataset
was observed based on the average correlation value across the
patients. The highest absolute value of the rs determined the
dominant measure which would be used for quality assurance.

In order to obtain further in-depth information on the
ambiguous delineations, the cases that need inspection and
correction by the experts were highlighted. For this purpose,
each transverse slice was represented by a point in a scat-
ter plot, describing the relation between the two correlated
quantities. To determine a criterion for evaluation, it was
hypothesised that uncertain predictions would be underlined
by low segmentation performance, i.e. reduced values for
DSC and accuracy and/or elevated ones for HD95 and ASD.
Once the correlation was determined, thresholds were used to
pinpoint profoundly ambivalent slices for each patient. More
specifically, these thresholds were pre-defined; the values used
were the average values of the each measure. This hypothesis
was investigated only for the metric resuted in the highest rs
with uncertainty.

Out-of-distribution robustness

TABLE VI
TRANSFORMS USED TO GENERATE OUT-OF-DISTRIBUTION DATA. WHEN

THE FACTOR IS OF THE FORM {a : k : b} IT MEANS THE VALUE IS
UPDATED FROM a TO b BY A STEP OF k.

Transform Parameters / Factors
Gaussian noise mean:0 & std:{0.1, 0.9}

Gaussian smoothing {0.25 :0.25: 2.0}
Spatial scaling {0.25 :0.25: 2.25}

Spatial shearing {-1.0 :0.25: 1.25}
Spatial shifting {-80 :20: 80} [mm]

For our last experiment, we explored how our approach
on uncertainty estimation and assessment act on data that the
model has not been trained on. Such data was generated by
applying transforms on the test set and keeping track of the
results (will be referred to as test-time data augmentation).
To establish the robustness of the network, it was assumed
that for these out-of-distribution inputs, the model would

result in diminished segmentation performance and increased
uncertainty [27, 34]. In an attempt to assess this hypothesis,
the performance of the model on the perturbed images was
explored relative to a network without test-time data augmen-
tation. The evaluation was based on the accuracy, precision
and DSC values, averaged over all patients in the test set.
Additionally, the aforementioned performance was compared
against the mean value of the total predicted uncertainty map.
The total uncertainty map was selected amongst the four types
since it supports uncertainty information emanating from the
data and the model combined. In this way, the efficiency of the
model to produce robust segmentations and the effectiveness
of the performance metrics to describe the total uncertainty
were explored. A list of the transforms used to produce out-
of-distribution data are mentioned in Table VI.

TABLE VII
DSC (MEAN±STD) ACHIEVED ON THE VALIDATION SET WHILE

PERFORMING NETWORK OPTIMIZATION. THE RESULTS REPORTED REFER
TO THE INFLUENCE OF THE SPECIFIC PARAMETER WHILE KEEPING THE

REST FIXED TO THEIR THE BASELINE ADAPTATIONS (SEE TABLE V).

Parameter DSC (average±std)
Data normalization

95/5 percentiles 0.75±0.01
97.5/2.5 percentiles 0.73±0.04

99/1 percentiles 0.75±0.04
z-score 0.69±0.06

Batch size
2 0.74±0.05
4 0.76±0.04
6 0.76±0.02

L2 regularization
1e− 6 0.71±0.04

Learning rate scheduler
StepLR 0.77±0.05

CyclicLR 0.76±0.03
ReduceLROnPlateau 0.71±0.08

IV. RESULTS

Network optimization
Since the outcomes of the 36 different combinations are

difficult to be reported, the results on the validation set in
terms of DSC (mean±std) for each of the parameters involved
separately during network optimization, are mentioned in
Table VII. As can be seen, when the StepLR scheduler was
used, the average DSC of the method reached its maximum
value of 77%, surmounting its two counterparts (CyclicLR
and ReduceLROnPlateau). Akin to that, a batch size of 6
increased the accuracy of the network by around 2% contrary
to the smallest batch applied. However, the image batch of
6 was not selected eventually, since the actual findings from
the combination of the various parameters in one model were
slightly different. More specifically, the highest DSC accom-
plished on the validation set, reached a value of 0.77±0.02.
The adaptations resulted in this value included min-max image
normalization using the 95/5 percentiles for each volume,
while selecting a batch size of 2 images. In addition, the
StepLR scheduler and L2 regularization of 1e − 6 were
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Fig. 3. Prediction of our method for patient Pt1 (slice No21). From left to right: the T2-weighted scan and the labeled image (superimposed in red), the
T2-weighted scan and the outline of the predicted segmentation (presented in red), the predicted variance map and the outline of the predicted prostate
delineation (displayed by the red contour).

Fig. 4. Example of the predicted prostate segmentation on top of the four different uncertainty types used in this work for patient Pt1 (slice No21). The
predicted prostate structure’s outline is presented by the red contour. The colorbars refer to the uncertainty values for each type.

also employed, while finally, early stopping was performed
on the epoch number 344. The suggested approach made
use of about 13 GB of GPU memory, whereas the training
lasted approximately 13 hours. Please refer to Supplementary
V to visualize the training curves. Eventually, the network
achieved a performance of 0.78±0.06 DSC on the test set.
Fig. 3 displays the predicted segmentation and variance as
compared to the labeled image for a 2D slice of a single patient
from the test set (Pt1). As observed, the predicted variance
presented higher values around the predicted segmentation and
lower ones inside the delineated structure.

Uncertainty assessment

Epistemic, aleatoric, total and 1-max(softmax) uncertainty
types were compared qualitatively against one another and
against the prostate predicted delineation for patient Pt1,
as illustrated in Fig. 4. The visual inspection of these four
maps revealed that all techniques operated in a comparable
manner, producing a ring of high intensities at the border of
the segmentations. However, it is apparent that aleatoric com-
ponent was composed of lower intensity values compared to
its three correspondences. This was also demonstrated in Fig.
5, where an overview of the performance metrics (accuracy,
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Fig. 5. Scatter plots of the different performance metrics and the four uncertainty types for patient Pt1. The calculations are obtained within a bounding box
per transverse slice. Slice number goes from No1 (closest to caudal direction) to No64 (closest to cranial direction). Accuracy decreases while uncertainty
increases, but DSC is almost 0 for low as well as for high uncertain slices (indicated by the red boxes).

precision, DSC, HD95 and ASD) and the four uncertainty types
is presented for the same patient (Pt1). As shown, the various
uncertainty estimates behaved similarly to one another, while
reporting some fluctuations on their exact value range. It was
also noticeable that uncertainty reached its maximum value
towards the end of the slice range (around slice No60), which
refers to the area nearest the cranial direction. From a closer
inspection of the scatter plots, it appeared that as the accuracy
of the network degrades, the uncertainty rises, suggesting that
there might be a correlation between these two quantities. It is
also worth noting that in regions near the caudal (around slice
No5) and the cranial (close to slice No61) directions, although
uncertainty values appeared to be low and high respectively,
DSC values were almost zero for both cases. Therefore, DSC
may not be an appropriate metric to describe the behavior of
the uncretainty. Due to space constraints, more results can be
viewed in Supplementary V.

A more quantitative evaluation of the uncertainty was
achieved through Spearman’s correlation coefficient rs. The

results of this correlational analysis are summarized in Fig.
6. As indicated, the overall pattern was approximately con-
stant amongst the four uncertainty estimates for each metric,
irrespective of the uncertainty proxy used. As opposed to the
two doubt scores (dbt and dbtmodified), the uncertainty maps
demonstrated a stronger correlation with the performance
metrics, since the obtained average rs abstained the value
of 0 for all case studies. This graph clearly indicates that
uncertainty revealed a more robust correlation with accuracy
than with the other measures. Particularly for the correlation
with accuracy, rs resulted in an average value around -0.7 for
all four uncertainty types, meaning that the correlation can be
described as negative. That is to say, for increasing accuracy,
decreasing uncertainty was expected. On the contrary, a strong
positive correlation between uncertainty and precision was
noticed since rs was approximately 0.6. Even though the dbt
achieved a correlation with accuracy of about -0.5, it was not
strong enough to surmount the respective value of rs between
the uncertainty maps and the accuracy previously mentioned
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Rs between the uncertainty maps and the performance metrics

Rs between the doubt score (dbt) and the performance metrics

Rs between the modified doubt score (dbtmodified) and the performance metrics

Fig. 6. Boxplots for the Spearman’s correlation coefficient Rs between uncertainty proxies (average value of the uncertainty map, doubt score and modified
doubt score) and the performance metrics (accuracy, precision, DSC, HD95 and ASD) for all patients in the test set.

(-0.7). Contrary to expectations, no correlation between the
dbtmodified and the performance is generated, implied by the
fact that rs was almost 0 for all metrics explored, as seen in
Fig. 6. Hence, it could conceivably be hypothesised that the
mean value of the uncertainty map could serve as a proxy for
the segmentation accuracy, regardless of the uncertainty type
used.

Due to the highest correlation achieved by the accuracy
and the average value of the uncertainty map, inspection of

the ambiguous slices for each patient can be performed. In
Fig. 7, four scatter plots are presented, each one of them
describing the relationship between a specific uncertainty type
and accuracy for patient Pt1. Overall, the same slices were
depicted by all four uncertainty types. Epistemic uncertainty
attained to capture all three of them (No45, No46, No47),
whereas total and 1-max(softmax) uncertainties detected two
(No46, No47) and one (No47) of them, correspondingly. The
labeled image, the predicted segmentation and the epistemic
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uncertainty obtained for these three slices, are presented in
Fig. 8. As seen, the segmentation method underestimated
the prostate gland for these ambiguous slices. Moreover, the
model’s uncertainty (i.e. the epistemic component) expands
over a ring around the delineated structure, imposing that
ambiguity was roughly present on the boundaries of the
predicted segmentation.

Out-of-distribution data analysis
For the dataset without the test-time augmentation applied,

the results concerning the accuracy, precision and DSC found
to be approximately 89, 90 and 70%, for each one of the met-
rics respectively, while the average value for the uncertainty
map was 0.23. The behaviour of our network on unseen data
is assessed from Fig. 9. As observed, accuracy and precision
do not experience large variations with increasing image
perturbations, yet this is not the case for DSC. For instance,
when gaussian noise was applied with 0 mean and a standard
deviation increase by 70% (contrary to the unperturbed data),
the DSC declined to 0%, suggesting that the noise was so
dominant on the image that the network became incapable
of identifying any structure at all. However, the segmentation
accuracy presented a drop of about 14%, attained an average of
77%, whereas the precision decrease by almost 7.5%, finally
reaching the value of 83%. The total uncertainty for this
case reduced around 8% contrary to the non-augmented data,
approaching the value of 0.02. An example input image for
patient Pt9 and the results obtained when employing gaussian
noise with std=0.7, are presented in Fig. 10. When spatial
shifting of 80 mm was applied to the images, the structure
of interest approached the edges of the FOV. In this case,
the DSC fell about 36% from its original value, whereas the
accuracy and the precision declined by 9 and 7%, reaching
81 and 84% respectively. Interestingly for this case study,
total uncertainty increased by almost 8%, attained the value
of 0.25. The most striking feature derived by this experiment
on out-of-distribution data was that DSC appeared to be in
agreement with the total uncertainty, for 4 out of the 5 types
of perturbations applied (except from the spatial shift, as
shown in Fig. 9). For this incidents, DSC followed a similar
decreasing pattern with uncertainty, as the network became
unable to detect robust delineations of the prostate gland.

V. DISCUSSION

In this work, we sought to determine four types of un-
certainty on the segmentation of a DL network for prostate
delineation. Based on our findings, uncertainty correlates bet-
ter with accuracy than with the other metrics explored, and
out-of-distribution data does not necessarily produce increased
uncertainty estimates.

For low image contrast, the prostate delineation becomes
challenging even for the clinicians (Fig. 13), and high uncer-
tainty is detected within a broader ring around the structure’s
outline (Fig. 14). For good image contrast, the segmentation
approach works satisfactorily (Fig. 3) and our framework
detects uncertainty around the edges of the delineation (Fig.

4). In regions where the segmentation quality is poor, for
instance on the borders of the predicted structure, uncertainty
maps generate increased values for all four uncertainty types
that were investigated (Fig. 4 and Fig. 14). On the one
hand, this is extremely relevant especially for the aleatoric
uncertainty, as reported in [11, 20]: this component accounts
for the uncertainty stemming from the data quality, mostly
highlighting the voxels belonging to the structure’s outline
[11, 18]. On the other hand, this is also well explained
by the epistemic uncertainty, which exhibits a rise in re-
gions which have been wrongly segmented [11] or which
are comprised of challenging voxels [20]. These results are
not surprising even regarding the 1-max(softmax) component,
since this uncertainty type is related to the confidence on
the predicted class [11, 15]. Thus, this component rises for
miss-classified voxels [11, 15]. In addition, epistemic seems
to dominate over its aleatoric correspondence. Because of its
nature, aleatoric component is confronted by the clinicians as
well: poor input image quality would hamper even the manual
contouring, leading to variations on the final segmentations
[18]. Therefore, data uncertainty is not encountered only in
automatic segmentation methods, but is rather inevitable in
clinic. Notwithstanding, the total uncertainty might be more
useful for further research compared to the other types due to
the fact that it combines the uncertainties that originate from
the two main sources (epistemic and aleatoric). In reviewing
the literature, there has been some work indicating that it might
not be a strong and clear distinction between epistemic and
aleatoric uncertainties [34]. Therefore what is necessary, useful
and relevant for an implementation, is always dependent on the
target of the application and the settings used.

Typically, a DL model is expected to produce lower uncer-
tainty values for robust predictions [24]. The results on the
Spearman’s correlation coefficient (rs) from Fig. 6, show that
uncertainty and doubt score are inversely proportional to the
segmentation accuracy (rs=-0.5), HD95 (rs=-0.4) and ASD
(rs=-0.4) and proportional to the precision (rs=0.4) and the
DSC (rs=0.5). Even though the rs was not explored in the
study of Jungo et al., the authors demonstrated that increased
DSC reflected high doubt scores (dbt > 25,000 average across
all patients), which is consistent with what we have obtained in
this study (dbt > 4,177 average across all patients). The most
interesting finding is that the average value of the uncertainty
map together with accuracy reveal the strongest correlation
compared to the rest of the combinations (rs=-0.7), by being
numerically close to the upper bound -1. Due to the fact that a
relation between the two aforementioned quantities is present,
a threshold only for uncertainty might be sufficient to specify
the uncertain predictions. Although, a second threshold on the
accuracy values could further improve the initial assumptions,
by limiting the number of the ambivalent slices. In this case,
interference by the experts during the revision of the predic-
tions would be reduced considerably and manual correction
of the erroneous image slices would target only the most
ambiguous incidents. Therefore, the overall process would
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Fig. 7. Scatter plots of the mean accuracy and the various uncertainty types for patient Pt1. The horizontal orange line represents the threshold value for
the accuracy whereas the vertical red dashed line portrays the threshold for the uncertainty. The slices that need human inspection lie on the bottom right
quadrant. For these plots, the average value of each quantity served as thresholds.

Fig. 8. The three tranverse slices of patient Pt1 (from left to right: No45, No46, No47) which were highlighted for human revision by the epistemic
uncertainty, according to the scatter plot in Fig. 7. Top row: ground truth prostate segmentation in yellow and predicted delineation in orange. Bottom row:
prediction in green and epistemic uncertainty in red.

12



Results on out-of-distribution data

Fig. 9. Errorbars indicating how input image perturbations affect the performance of the network and the quantification of the total uncertainty.

be accelerated providing a feasible solution for an accurate
automatic structure segmentation algorithm for the clinic.

Our approach was designed to determine the effect of
uncertainty estimation on perturbed datasets. It was assumed
that increased perturbations would generate out-of-distribution
images and, therefore, the network would not be capable of
producing correct delineations of the prostate. This in turn
would provoke low accuracy values with raised predicted un-
certainty estimates, as also hypothesized by relevant literature
[15, 27, 30, 34, 35]. However, the findings do not support this
assumption [15, 34]. In most cases, although the segmentation
accuracy slightly degrades with increasing perturbations, total
uncertainty does not experience a rise, as showed from Fig.

9 and 10. The latter seem to be consistent with the results
in [27] and [34]. This outcome may be explained by the
absence of a predicted structure. For example, with increasing
gaussian noise DSC values approach 0 (Fig. 9), denoting that
the prostate structure cannot be identified by the network.
Therefore, when the test data differs a lot from the training
data, the model might not be able to delineate the prostate at
all. Yet, uncertainty may be generated approximately where the
location of the prostrate structure should be, although its values
would be considerably lower (Fig. 10) than those produced by
the in-distribution data (Fig. 4). An unanticipated finding from
this experiment is the decreasing pattern that DSC follows
for the majority of the case studies, which is consistent with
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Fig. 10. Example of the network’s output when using test-time augmentation
with gaussian noise 0±0.7 (mean±std). On the top: T2-weighted image before
(left) and after (right) the application of the gaussian noise for patient Pt9.
On the bottom: the four uncertainty maps produced for this patient.

the descending trend of total uncertainty. This observation
may support the hypothesis that DSC could describe better
than accuracy or precision the segmentation performance and
the uncertainty estimation of the model on out-of-distribution
data. Uncertainty on the corrupted datasets may be better
described by an ensemble model, as reported by Ovadia et
al. [34] or using a variational autoencoder as suggested by
Meijerink et al. [27] and Ståhl et al. [29], who also argued that
out-of-distribution input might not produced high epistemic
uncertainty but rather low aleatoric uncertainty.

The suggested approach yields to limitations. For instance,
uncertainty estimation is strongly affected by the way epis-
temic and aleatoric counterparts are quantified. In our approach
epistemic uncertainty was gauged through 50 MC samples
while applying 50% of dropout in inference time. The variance
of the prediction is calculated in the loss function, averaging
the 20 MC samples in every epoch. We noticed that the larger
this number was, the more expensive the training is concerning
GPU capacity and of course total training time. At the end,
the aleatoric uncertainty is extracted as the average on the
estimated variance channel, after the MC dropout applica-
tion in inference time. These estimates could be determined
differently, employing varied alternatives of the number of
multiple samples for each uncertainty component or applying
a different dropout rate. In addition, the evaluation of this
study was performed in the transverse plane, however coronal

and sagittal planes might also be enquired; future studies may
investigate this aspect. In general, the dataset included few
patients, so even though our results are promising, the lack of
sufficient data reduces the validity of the outcomes. We can
consider this study as a first feasibility investigation to bring
uncertainty estimation into the clinic, but in the future a larger
patient cohort should be employed to confirm the conclusions
made. Furthermore, accurate error-prone slice identification
is task-dependent since the thresholds used are pre-defined,
hampering the generalization ability of the approach. Besides,
calibration is considered essential when dealing with probabil-
ity and uncertainty estimates in order to ensure that they are
representatives of the true likelihood [34, 36, 37]. However,
calibration was not included in this work, possibly impacting
the results.

This study, provides a feasible framework for uncertainty
estimation and assessment for RT. Our approach could facili-
tate identifying where the DL model fails and give a valuable
insight into the data as well as the model used. This is
of great importance when designing an automatic structure
segmentation network for irradiation therapy. According to our
outcomes, the predicted uncertainty can be used as a surrogate
for accuracy in order to evaluate the performance of the
segmentation approach. However, there is a clear distinction
between in- and out-of-distribution input performance. The
suggested method seems encouraging and further work is
required to establish its validity, especially using a larger
cohort of patients. Future studies might also focus on ex-
tending this approach to be used in clinical RT applications,
ameliorating the workload. It might also be beneficial for
further investigations to broaden the scope of this application
to other body districts apart from prostate cancer treatment.
This could eventually lead to a more generalized approach for
uncertainty estimation in RT.
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SUPPLEMENTARY

Monte Carlo Dropout

MC dropout is equivalent to a probabilistic Gaussian pro-
cess approximation [17], where a distribution that minimizes
equation 3 is found [20]. Practically, a predefined number of
forward passes is performed during inference and the results
are to be averaged, a practice also known as model averaging
[17]. Mathematically, the loss function for each point i for
given pairs of input data and labels (x,y respectively), is
formulated as:

L(θ, d) = − 1

N

N∑
i=1

(yi|output(xi)) +
1− d
2N
||θ2|| (8)

where N is the number of the voxels, d is the dropout
probability that is applied, θ represents the parameters of the
optimized distribution q and log p(yi|output(xi)) comprises
the log-likelihood. According to Kendal and Gal [20], in
classification setups a softmax likelihood is used and the
results over the multiple samples T are averaged:

p(y|x, ω) ≈ 1

T

T∑
t=1

Softmax(output(xi)) (9)

Then the epistemic uncertainty can be seen as the entropy of
the predicted probability vector d over the c classes:

H(d) = −
C∑
c=1

dc log dc (10)

Medical Segmentation Decathlon dataset

The prostate data collection used for this project is com-
posed of T2-weighted and apparent diffusion coefficient
(ADC) from diffusion-weighted MRI, for each patient. An
example of two patients from this data collection, can be
visualized in Fig. 11.

Results

The training curves obtained by the model with the highest
mean DSC on the validation set (77±0.02%) during network
optimization, are presented in Figure 12.

The results for 2 patients of the test set (Pt4 and Pt5)
are presented in Fig. 13 and 14. As shown, the network
oversegments the prostate when its boundaries are getting
more difficult to be spotted. Especially for patient Pt5, where
the prostate gland is hard to detect even by an expert, a broader
ring of high uncertainty values is produced.
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Fig. 11. Example images of two prostate cancer patients from the Medical Segmentation Decathlon dataset (Pt1 and Pt4). From left to right: T2 MR scan,
ADC image, label image (the prostate gland is illustrated in yellow and the peripheral zone in light blue). For our application we considered only the label
of the prostate, discarding the peripheral zone.

Fig. 12. Training loss and mean DSC curve from the selected model.
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Fig. 13. Prediction of our method for 2 patients Pt4 (top row), Pt5 (bottom row). From left to right: the T2-weighted scan and the labeled image (superimposed
in red), the T2-weighted scan and the outline of the predicted segmentation (presented in red), the predicted variance map and the outline of the predicted
prostate delineation (displayed by the red contour).

Fig. 14. Example of the predicted prostate segmentations on top of the four different uncertainty types used in this work for 2 patients Pt4 (top row), Pt5
(bottom row). The predicted prostate structure’s outline is presented by the red contour. The colorbars refer to the uncertainty values for each type. From left
to right: epistemic, aleatoric, total and 1-max(softmax) uncertainties.
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